Abstract
Abstract Intrinsic efficiencies of multi-layer boron-10 thin-film detectors were studied theoretically and experimentally. For multi-layer schemes based on an optimized single-layer film thickness, the practical efficiency is limited to about 42% for thermal neutrons. This is about half the efficiency of a moderated 3He detectors in commercial use for portal monitoring. The efficiency limitation is due to charged particle loss in the boron layers and substrates. The same loss mechanism will prevent all substrate-based boron detectors from ever reaching the intrinsic efficiencies of high-pressure 3He tubes, independent of substrate geometry and material composition. Experimental data also indicate that the multi-layer detector configuration can have an efficiency approaching the theoretical limit. Excellent n / γ discrimination has also been achieved using an ionization chamber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.