Abstract

We present a multi-lattice kinetic Monte Carlo (kMC) approach that efficiently describes the atomistic dynamics of morphological transitions between commensurate structures at crystal surfaces. As an example, we study the reduction of a (√5 × √5)R27° PdO(101) overlayer on Pd(100) in a CO atmosphere. Extensive density functional theory calculations are used to establish an atomistic pathway for the oxide reduction process. First-principles multi-lattice kMC simulations on the basis of this pathway fully reproduce the experimental temperature dependence of the reduction rate (Fernandes et al. Surf. Sci. 2014, 621, 31–39) and highlight the crucial role of elementary processes special to the boundary between oxide and metal domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call