Abstract

Application of simultaneous multi-laser nanoparticle tracking analysis (NTA) to environmental water samples to investigate nonliving natural organic matter (NNOM) is introduced as an innovative method for observing particles directly in their native media. Multi-laser NTA results of particle visualization, particle number concentration, and particle size distribution elucidated particle dynamics in low and high total dissolved solids (TDS) aqueous environmental samples. A pond water sample and concentrate from a reverse osmosis (RO) treatment process (Stage 1) had 1.3 × 108 and 5.62 × 1019 particles/mL, respectively, (at time = 0) after filtration at 0.45 μm. Beyond the traditional applications for this instrument, this research presents novel evidence-based investigations that probe the existence of supramolecular structures in environmental waters during turbulence or quiescence. The pond water sample exhibited time-dependent aggregation as the volume distribution shifted to greater diameter during quiescence, compared to turbulence. Disaggregation (increased numbers of particles over time) was noted in the >250 nm to <600 nm region, and aggregation of >450 nm particles was also noted in the quiescent RO concentrate sample, indicative of depletion of small particles to form larger ones. Multi-laser NTA and dynamic light scattering (DLS) capabilities were compared and contrasted. DLS and NTA are different (complementary) particle sizing techniques. DLS yielded more information about the physical hydrogel in the NNOM hierarchy whereas multi-laser NTA better characterized meta-chemical and chemical hydrogel characteristics. Operationalization of innovation—moving from fundamental investigations to application—is supported by implementing novel analytical instrumentation as we address issues involving climate change, drought, and the scarcity of potable water. Multi-laser NTA can be used as a tool to study and optimize complex water and wastewater treatment processes. Questions about water treatment efficiencies, membrane fouling, assistance of pollutant transport, and carbon capture cycles affected by NNOM will benefit from insights from multi-laser NTA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.