Abstract

Due to the low storage cost and high computation efficiency of hashing, cross-modal hashing has been attracting widespread attention in recent years. In this paper, we investigate how supervised cross-modal hashing (CMH) benefits from multi-label and contrastive learning (CL) by overcoming the following two challenges: (i) how to combine multi-label and supervised contrastive learning to consider diverse relationships among cross-modal instances, and (ii) how to reduce the sparsity of multi-label representation so as to improve the similarity measurement accuracy. To this end, we propose a novel cross-modal hashing framework, dubbed Multi-Label Weighted Contrastive Hashing (MLWCH). This framework involves compact consistent similarity representation, a new designed multi-label similarity calculation method that efficiently reduces the sparsity of multi-label by reducing redundant zero elements. Furthermore, a novel multi-label weighted contrastive learning strategy is developed to significantly improve hashing learning by assigning similarity weight to positive samples under both linear and non-linear similarities. Extensive experiments and ablation analysis over three benchmark datasets validate the superiority of our MLWCH method, especially over several outstanding baselines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call