Abstract

In the complex battlefield electromagnetic environment, multiple jamming signals can enter the radar receiver simultaneously due to the development of jammers and modulation technology. The received compound jamming signals aggravate the difficulty of recognition and subsequent counter-countermeasure. In the face of strong overlapping signals and unseen jamming signal combinations, the performance of existing recognition methods usually seriously degrades. In this paper, an end-to-end multi-label classification framework combining a complex-valued convolutional neural network (CV-CNN) and jamming class representations is proposed to automatically recognize the jamming signal components of compound jamming signals. A basic multi-label CV-CNN (ML-CV-CNN) is first designed to directly process time–domain complex signals and fully retain jamming signal information. Then, the jamming class representations are generated using prototype clustering implemented by learning vector quantization, and they are fused with the ML-CV-CNN using class decoupling implemented by the attention mechanism to construct a multi-label class representation CV-CNN (ML-CR-CV-CNN), which can better learn the class-related features required for recognition. Finally, an adaptive threshold calibration is adopted to obtain optimal recognition results by multi-threshold discrimination. Simulation results verify that the proposed method has superior recognition performance, which is reflected in the strong robustness to the varying jamming-to-noise ratio (JNR) and power ratio, faster convergence speed with high JNRs, and better generalization for unseen jamming signal combinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.