Abstract
In this paper, a novel framework is developed for leveraging large-scale loosely tagged images for object classifier training by addressing three key issues jointly: (a) spam tags e.g., some tags are more related to popular query terms rather than the image semantics; (b) loose object tags, e.g., multiple object tags are loosely given at the image level without identifying the object locations in the images; (c) missing object tags, e.g., some object tags are missed and thus negative bags may contain positive instances. To address these three issues jointly, our framework consists of the following key components for leveraging large-scale loosely tagged images for object classifier training: (1) distributed image clustering and inter-cluster visual correlation analysis for handling the issue of spam tags by filtering out large amounts of junk images automatically, (2) multiple instance learning with missing tag prediction for dealing with the issues of loose object tags and missing object tags jointly; (3) structural learning for leveraging the inter-object visual correlations to train large numbers of inter-related object classifiers jointly. Our experiments on large-scale loosely tagged images have provided very positive results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.