Abstract

Vehicle re-identification (re-ID) is a vital technique to the urban intelligent video surveillance system and smart city. Given a query vehicle image, the vehicle re-ID aims to search and retrieve the images of the same vehicle that have been captured by different surveillance cameras with various viewing angles. Based on the observation that essential vehicle attributes, like vehicle‘s color and types (e.g., sedan, bus, truck, and so on), could be used as important traits to recognize vehicle, an effective multi-label learning (MLL) method is proposed in this paper that can simultaneously learn three labels: vehicle’s ID, type, and color. With three labels, a multi-label smoothing regularization (MLSR) is further proposed, which can allocate a uniform label distribution to the multi-labeled training images to regularize MLL model and improve vehicle re-ID performance. Extensive experiments conducted on the VeRi and VehicleID datasets have demonstrated that the proposed MLL with MLSR approach can effectively improve the performance delivered by the baseline and outperform multiple state-of-the-art vehicle re-ID methods as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.