Abstract
Predicting protein subcellular locations has attracted much attention in the past decade. However, one of the most challenging problems is that many proteins were found simultaneously existing in, or moving between, two or more different cell components in a eukaryotic cell. Seldom previous predictors were able to deal with such multiplex proteins although they have extremely important implications in future drug discovery in terms of their specific subcellular targeting. Approximately 20% of the human proteome consists of such multiplex proteins with multiple sample labels. In order to efficiently handle such multiplex human proteins, we have developed a novel multi-label (ML) learning and prediction framework called ML-PLoc, which decomposes the multi-label prediction problem into multiple independent binary classification problems. ML-PLoc is constructed based on support vector machine (SVM) and sequential evolution information. Experimental results show that ML-PLoc can achieve an overall accuracy 64.6% and recall ratio 67.2% on a benchmark dataset consisting of 14 human subcellular locations, and is very powerful for dealing with multiplex proteins. The current approach represents a new strategy to deal with the multi-label biological problems. ML-PLoc software is freely available for academic use at: http://www.csbio.sjtu.edu.cn/bioinf/ML-PLoc .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.