Abstract
Great efforts have been made by using deep neural networks to recognize multi-label images. Since multi-label image classification is very complicated, many studies seek to use the attention mechanism as a kind of guidance. Conventional attention-based methods always analyzed images directly and aggressively, which is difficult to well understand complicated scenes. We propose a global/local attention method that can recognize a multi-label image from coarse to fine by mimicking how human-beings observe images. Our global/local attention method first concentrates on the whole image, and then focuses on its local specific objects. We also propose a joint max-margin objective function, which enforces that the minimum score of positive labels should be larger than the maximum score of negative labels horizontally and vertically. This function further improve our multi-label image classification method. We evaluate the effectiveness of our method on two popular multi-label image datasets (i.e., Pascal VOC and MS-COCO). Our experimental results show that our method outperforms state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.