Abstract
In fully supervised learning-based medical image classification, the robustness of a trained model is influenced by its exposure to the range of candidate disease classes. Generalized Zero Shot Learning (GZSL) aims to correctly predict seen and novel unseen classes. Current GZSL approaches have focused mostly on the single-label case. However, it is common for chest X-rays to be labelled with multiple disease classes. We propose a novel multi-modal multi-label GZSL approach that leverages feature disentanglement andmulti-modal information to synthesize features of unseen classes. Disease labels are processed through a pre-trained BioBert model to obtain text embeddings that are used to create a dictionary encoding similarity among different labels. We then use disentangled features and graph aggregation to learn a second dictionary of inter-label similarities. A subsequent clustering step helps to identify representative vectors for each class. The multi-modal multi-label dictionaries and the class representative vectors are used to guide the feature synthesis step, which is the most important component of our pipeline, for generating realistic multi-label disease samples of seen and unseen classes. Our method is benchmarked against multiple competing methods and we outperform all of them based on experiments conducted on the publicly available NIH and CheXpert chest X-ray datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE transactions on medical imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.