Abstract
Multi-label feature selection is an indispensable technology in multi-semantic high-dimensional data preprocessing, which has been brought into focus in recent years. However, most existing methods explicitly assume that the significance of all relevant labels is the same for every instance, while ignoring the real scenarios that the significance of available labels to each instance is usually different. In this paper, we propose a novel multi-label feature selection based on label distribution and neighborhood rough set, known as LDRS. To be specific, we first construct a label enhancement method based on instance information distribution to convert the logical labels of multi-label data into label distribution, thereby capturing label significance to provide additional information for learning tasks. Then, we extend the neighborhood rough set model for label distribution learning, and discuss the related properties in detail. This extended model can effectively avoid the selection of neighborhood granularity and seamlessly apply to handle label distribution data. After that, two feature significance measures are established to realize the quality evaluation of features and the fusion of label-specific features. Finally, a novel feature selection framework is designed, which takes into account feature significance, label significance, and label-specific features, simultaneously. Experiments on both public and real-world datasets exhibit the advantages of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.