Abstract

BackgroundMetabolic pathway prediction is one possible approach to address the problem in system biology of reconstructing an organism’s metabolic network from its genome sequence. Recently there have been developments in machine learning-based pathway prediction methods that conclude that machine learning-based approaches are similar in performance to the most used method, PathoLogic which is a rule-based method. One issue is that previous studies evaluated PathoLogic without taxonomic pruning which decreases its performance.ResultsIn this study, we update the evaluation results from previous studies to demonstrate that PathoLogic with taxonomic pruning outperforms previous machine learning-based approaches and that further improvements in performance need to be made for them to be competitive. Furthermore, we introduce mlXGPR, a XGBoost-based metabolic pathway prediction method based on the multi-label classification pathway prediction framework introduced from mlLGPR. We also improve on this multi-label framework by utilizing correlations between labels using classifier chains. We propose a ranking method that determines the order of the chain so that lower performing classifiers are placed later in the chain to utilize the correlations between labels more. We evaluate mlXGPR with and without classifier chains on single-organism and multi-organism benchmarks. Our results indicate that mlXGPR outperform other previous pathway prediction methods including PathoLogic with taxonomic pruning in terms of hamming loss, precision and F1 score on single organism benchmarks.ConclusionsThe results from our study indicate that the performance of machine learning-based pathway prediction methods can be substantially improved and can even outperform PathoLogic with taxonomic pruning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.