Abstract

Label-specific features serve as an effective strategy to learn from multi-label data, where a set of features encoding specific characteristics of each label are generated to help induce multi-label classification model. Existing approaches work by taking the two-stage strategy, where the procedure of label-specific feature generation is independent of the follow-up procedure of classification model induction. Intuitively, the performance of resulting classification model may be suboptimal due to the decoupling nature of the two-stage strategy. In this paper, a wrapped learning approach is proposed which aims to jointly perform label-specific feature generation and classification model induction. Specifically, one (kernelized) linear model is learned for each label where label-specific features are simultaneously generated within an embedded feature space via empirical loss minimization and pairwise label correlation regularization. Comparative studies over a total of sixteen benchmark data sets clearly validate the effectiveness of the wrapped strategy in exploiting label-specific features for multi-label classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.