Abstract
Colon cancer classification has a significant guidance value in clinical diagnoses and medical prognoses. The classification of colon cancers with high accuracy is the premise of efficient treatment. Our task is to build a system for colon cancer detection and classification based on slide histopathological images. Some former researches focus on single label classification. Through analyzing large amount of colon cancer images, we found that one image may contain cancer regions of multiple types. Therefore, we reformulated the task as multi-label problem. Four kinds of features (Color Histogram, Gray-Level Co-occurrence Matrix, Histogram of Oriented Gradients and Euler number) were introduced to compose our discriminative feature set, extracted from our dataset that includes six single categories and four multi-label categories. In order to evaluate the performance and make comparison with our multi-label model, three commonly used multi-classification methods were designed in our experiment including one-against-all SVM (OAA), one-against-one SVM (OAO) and multi-structure SVM. Four indicators (Precision, Recall, F-measure, and Accuracy) under 3-fold cross-validation were used to validate the performance of our approach. Experiment results show that the precision, recall and F-measure of multi-label method as 73.7%, 68.2%, and 70.8% with all features, which are higher than the other three classifiers. These results demonstrate the effectiveness and efficiency of our method on colon histopathological images analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.