Abstract

Optical encryption has been extensively researched in the field of information security due to its characteristics of being parallel and multi-dimensionsal. However, most of the proposed multiple-image encryption systems suffer from a cross-talk problem. Here, we propose a multi-key optical encryption method based on a two-channel incoherent scattering imaging. In the encryption process, plaintexts are coded by the random phase mask (RPM) in each channel and then coupled by an incoherent superposition to form the output ciphertexts. In the decryption process, the plaintexts, keys, and ciphertexts, are treated as a system of two linear equations with two unknowns. By utilizing the principles of linear equations, the issue of cross-talk can be mathematically resolved. The proposed method enhances the security of the cryptosystem through the quantity and order of the keys. Specifically, the key space is significantly expanded by removing the requirement of uncorrected keys. This approach provides a superior method that can be easily implemented in various application scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.