Abstract
The polymicrobial nature of diabetic foot infection (DFI) makes accurate identification of the DFI microbiota, including rapid detection of drug resistance, challenging. Therefore, the main objective of this study was to apply matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS) technique accompanied by multiply culture conditions to determine the microbial patterns of DFIs, as well as to assess the occurrence of drug resistance among Gram-negative bacterial isolates considered a significant cause of the multidrug resistance spread. Furthermore, the results were compared with those obtained using molecular techniques (16S rDNA sequencing, multiplex PCR targeting drug resistance genes) and conventional antibiotic resistance detection methods (Etest strips). The applied MALDI-based method revealed that, by far, most of the infections were polymicrobial (97%) and involved many Gram-positive and -negative bacterial species—19 genera and 16 families in total, mostly Enterobacteriaceae (24.3%), Staphylococcaceae (20.7%), and Enterococcaceae (19.8%). MALDI drug-resistance assay was characterized by higher rate of extended-spectrum beta-lactamases (ESBLs) and carbapenemases producers compared to the reference methods (respectively 31% and 10% compared to 21% and 2%) and revealed that both the incidence of drug resistance and the species composition of DFI were dependent on the antibiotic therapy used. MALDI approach included antibiotic resistance assay and multiply culture conditions provides microbial identification at the level of DNA sequencing, allow isolation of both common (eg. Enterococcus faecalis) and rare (such as Myroides odoratimimus) bacterial species, and is effective in detecting antibiotic-resistance, especially those of particular interest—ESBLs and carbapenemases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.