Abstract
In this second part of the treatment of instantons in quantum mechanics, the focus is on specific calculations related to a number of quantum mechanical potentials with degenerate minima. We calculate the leading multi-instanton contributions to the partition function, using the formalism introduced in the first part of the treatise [Ann. Phys. (N. Y.) (previous issue) (2004)]. The following potentials are considered: (i) asymmetric potentials with degenerate minima, (ii) the periodic cosine potential, (iii) anharmonic oscillators with radial symmetry, and (iv) a specific potential which bears an analogy with the Fokker–Planck equation. The latter potential has the peculiar property that the perturbation series for the ground-state energy vanishes to all orders and is thus formally convergent (the ground-state energy, however, is non-zero and positive). For the potentials (ii), (iii), and (iv), we calculate the perturbative B-function as well as the instanton A-function to fourth order in g. We also consider the double-well potential in detail, and present some higher-order analytic as well as numerical calculations to verify explicitly the related conjectures up to the order of three instantons. Strategies analogous to those outlined here could result in new conjectures for problems where our present understanding is more limited.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.