Abstract
In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances, and the task is to predict the labels of unseen bags. In this paper, a web mining problem, i.e. web index recommendation, is investigated from a multi-instance view. In detail, each web index page is regarded as a bag, while each of its linked pages is regarded as an instance. A user favoring an index page means that he or she is interested in at least one page linked by the index. Based on the browsing history of the user, recommendation could be provided for unseen index pages. An algorithm named Fretcit-kNN, which employs the Minimal Hausdorff distance between frequent term sets and utilizes both the references and citers of an unseen bag in determining its label, is proposed to solve the problem. Experiments show that in average the recommendation accuracy of Fretcit-kNN is 81.0% with 71.7% recall and 70.9% precision, which is significantly better than the best algorithm that does not consider the specific characteristics of multi-instance learning, whose performance is 76.3% accuracy with 63.4% recall and 66.1% precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.