Abstract
BackgroundGlycaemic control in the intensive care unit is dependent on effective prediction of patient insulin sensitivity (SI). The stochastic targeted (STAR) controller uses a 2D stochastic model for prediction, with current SI as an input and future SI as an output. MethodsThis paper develops an extension of the STAR 2D stochastic model into 3D by adding blood glucose (G) as an input. The performance of the 2D and 3D stochastic models is compared over a retrospective cohort of 65,269 data points across 1525 patients. ResultsUnder five-fold cross-validation, the 3D model was found to better match the expected potion of data points within, above and below various credible intervals, suggesting it provided a better representation of the underlying probability field. The 3D model was also found to provide an 18.1% narrower 90% credible interval on average, and a narrower 90% credible interval in 96.4% of cases, suggesting it provided more accurate predictions of future SI. Additionally, the 3D stochastic model was found to avoid the undesirable tendency of the 2D model to overestimate SI for patients with high G, and underestimate SI for patients with low G. ConclusionsOverall, the 3D stochastic model is shown to provide clear potential benefits over the 2D model for minimal clinical cost or effort, though further exploration into whether these improvements in SI prediction translate into improved clinical outcomes is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.