Abstract
The suitability of using Moderate Resolution Imaging Spectroradiometer (MODIS) images for surface soil moisture estimation to investigate the importance of soil moisture in different applications, such as agriculture, hydrology, meteorology and natural disaster management, is evaluated in this study. Soil moisture field measurements and MODIS images of relevant dates have been acquired. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) are calculated from MODIS images. In addition, MODIS Land Surface Temperature (LST) data (MOD11A1) are used in this analysis. Four different soil moisture estimation models, which are based on NDVI–LST, EVI–LST, NDVI–LST–NDWI and EVI–LST–NDWI, are developed and their accuracies are assessed. Statistical analysis shows that replacing EVI with NDVI in the model that is based on LST and NDVI increases the accuracy of soil moisture estimation. Accuracy evaluation of soil moisture estimation using check points shows that the model based on LST, EVI and NDWI values gives a higher accuracy than that based on LST and EVI values. It is concluded that the model based on the three indices is a suitable model to estimate soil moisture through MODIS imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.