Abstract
We describe a method of mobile robot localization based on a rough map using stereo vision, which uses multiple visual features to detect and segment the buildings in the robot's field of view. The rough map is an inaccurate map with large uncertainties in the shapes, dimensions and locations of objects so that it can be built easily. The robot fuses odometry and vision information using extended Kalman filters to update the robot pose and the associated uncertainty based on the recognition of buildings in the map. We use a multi-hypothesis Kalman filter to generate and track Gaussian pose hypotheses. An experimental result shows the feasibility of our localization method in an outdoor environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.