Abstract
AbstractThe Disturbance storm time (Dst) index has been widely used as a proxy for the ring current intensity, and therefore as a measure of geomagnetic activity. It is derived by measurements from four ground magnetometers in the geomagnetic equatorial region. We present a new model for predicting Dst with a lead time between 1 and 6 hr. The model is first developed using a Gated Recurrent Unit (GRU) network that is trained using solar wind parameters. The uncertainty of the Dst model is then estimated by using the Accurate and Reliable Uncertainty Estimate method (Camporeale & Carè, 2021, https://doi.org/10.1615/int.j.uncertaintyquantification.2021034623). Finally, a multi‐fidelity boosting method is developed in order to enhance the accuracy of the model and reduce its associated uncertainty. It is shown that the developed model can predict Dst 6 hr ahead with a root‐mean‐square‐error of 13.54 nT. This is significantly better than a persistence model or a single GRU model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.