Abstract

Absorption, scattering, and turbulence experienced in underwater channels severely limit the range of quantum communication links. In this paper, as a potential solution to overcome range limitations, we investigate a multi-hop underwater quantum key distribution (QKD) where intermediate nodes between the source and destination nodes help the key distribution. We consider the deployment of passive relays that simply redirect the qubits to the next relay node or the receiver without any measurement. Based on the near-field analysis, we present the performance of a relay-assisted QKD scheme in terms of quantum bit error rate and secret key rate in different water types and turbulence conditions. We further investigate the effect of system parameters such as aperture size and detector field of view on the performance. Our results demonstrate under what conditions relay-assisted QKD can be beneficial and what end-to-end transmission distances can be supported with a multi-hop underwater QKD system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.