Abstract

Fire is a significant cause of fatalities and property loss. In tall spaces, early smoke dispersion is hindered by thermal barriers, and initial flames with limited smoke production may be obscured by ground-level structures. Consequently, smoke, temperature, and other fire sensor signals are weakened, leading to delays in fire detection by sensor networks. This paper proposes a multi-height and heterogeneous fusion discriminant model with a multilayered LSTM structure for the robust detection of weak fire signals in such challenging situations. The model employs three LSTM structures with cross inputs in the first layer and an input-weighted LSTM structure in the second layer to capture the temporal and cross-correlation features of smoke concentration, temperature, and plume velocity sensor data. The third LSTM layer further aggregates these features to extract the spatial correlation patterns among different heights. The experimental results demonstrate that the proposed algorithm can effectively expedite alarm response during sparse smoke conditions and mitigate false alarms caused by weak signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call