Abstract
Neural networks have proven to be an influential tool in assisting with the inverse design of nanophotonic structures. However, the issue of non-uniqueness poses a significant limitation to this approach, as disparate designs can produce nearly identical spectra. This problem can result in the neural network failing to converge or producing erroneous results. In this study, we propose a multi-headed tandem neural network (MTNN) approach to address this issue. This method enables the neural network to generate multiple sets of outputs and utilize tandem neural networks (TNNs), and self-attention mechanisms, among other techniques, to constrain the results, and let these multiple outputs be fitted separately to different results. This allows the neural network to converge without sacrificing the simplex solution in the face of multimodal solutions. We employ the MTNN approach to inverse engineer a multilayer photonic structure comprised of two sets of oxide films, and the multiple outputs provide numerous valuable solutions. Our approach presents an effective solution for the inverse design of photonic structures afflicted with non-uniqueness problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.