Abstract

In this paper, we introduce a novel type of chimera state, characterized by the geometrical distortion of the coherent ring topology of coupled oscillators. The multi-headed loop chimeras are examined for a simple network of locally coupled pendulum clocks, suspended on the vertical platform. We determine the regions of the occurrence of the observed patterns, their structure, and possible co-existence. The representative examples of behaviors are shown, exhibiting the variety of configurations that can be observed. The statistical analysis of the solutions indicates the geometrical regions of the system with the highest probability of the chimeras' occurrence. We investigate the mechanism of the creation of the observed states, showing that the manipulation of the initial positions of chosen pendula may induce the desired patterns. Apart from the study of the isolated network, we also discuss the scenario of the movable platform, showing a possible influence of the global coupling structure on the stability of the observed states. The stability of loop chimeras is examined for varying both the amplitude and the frequency of the oscillations of the platform. We indicate the excitation parameters for which the solutions can survive as well as be destroyed. The bifurcation analysis included in the paper allows us to discuss the transitions between possible behaviors. The appearance of multi-headed loop chimeras is generalized into large networks of oscillators, showing the universal character of the observed patterns. One should expect to observe similar results also in other types of coupled oscillators, especially the mechanical ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.