Abstract

Considering the large number of natural disasters on the planet, many areas in the world are at risk of these hazards; therefore, providing an integrated map as a guide map for multiple natural hazards can be applied to save human lives and reduce financial losses. This study designed a multi-hazard map for three important hazards (earthquakes, floods, and landslides) to identify endangered areas in Kermanshah province located in western Iran using ensemble SWARA-ANFIS-PSO and SWARA-ANFIS-GWO models. In the first step, flood and landslide inventory maps were generated to identify at-risk areas. Then, the occurrence places for each hazard were divided into two groups for training susceptibility models (70%) and testing the models applied (30%). Factors affecting these hazards, including altitude, slope aspect, slope degree, plan curvature, distance to rivers, distance to roads, distance to the faults, rainfall, lithology, and land use, were used to generate susceptibility maps. The SWARA method was used to weigh the subclasses of the influencing factors in floods and landslides. In addition, a peak ground acceleration (PGA) map was generated to investigate earthquakes in the study area. In the next step, the ANFIS machine learning algorithm was used in combination with PSO and GWO meta-heuristic algorithms to train the data, and SWARA-ANFIS-PSO and SWARA-ANFIS-GWO susceptibility maps were separately generated for flood and landslide hazards. The predictive ability of the implemented models was validated using the receiver operating characteristics (ROC), root mean square error (RMSE), and mean square error (MSE) methods. The results showed that the SWARA-ANFIS-PSO ensemble model had the best performance in generating flood susceptibility maps with ROC = 0.936, RMS = 0.346, and MSE = 0.120. Furthermore, this model showed excellent results (ROC = 0.894, RMS = 0.410, and MSE = 0.168) for generating a landslide map. Finally, the best maps and PGA map were combined, and a multi-hazard map (MHM) was obtained for Kermanshah Province. This map can be used by managers and planners as a practical guide for sustainable development.

Highlights

  • Considering the large number of natural disasters on the planet, many areas in the world are at risk of these hazards; providing an integrated map as a guide map for multiple natural hazards can be applied to save human lives and reduce financial losses

  • The results of the analysis showed that all the factors used in the assessment of flood and landslide hazards can be applied in modeling

  • The commonly used information gain ratio (IGR) method was used to determine the importance of the influencing factors used and it was implemented considering the significant effect on the accuracy of the estimation

Read more

Summary

Introduction

Considering the large number of natural disasters on the planet, many areas in the world are at risk of these hazards; providing an integrated map as a guide map for multiple natural hazards can be applied to save human lives and reduce financial losses. This study designed a multi-hazard map for three important hazards (earthquakes, floods, and landslides) to identify endangered areas in Kermanshah province located in western Iran using ensemble SWARA-ANFIS-PSO and SWARAANFIS-GWO models. Providing a multihazard map (MHM) can be an effective tool for managers and planners to reduce economic losses and casualties In this regard, using spatial methods and considering several hazards in an area, it is possible to identify at-risk ­areas[7]. It is of importance to generate a susceptibility map for regions prone to f­loods[8,13,14,15] Another important natural hazard that causes great damage to the mountainous areas is l­andslides[16]. The PSO and GWO techniques were employed to overcome the limitations of the ANFIS method via optimization

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.