Abstract
As manufacturing shifts towards large-scale production, the size of the workshop increases, and its search space exponentially expands. It is difficult for existing algorithms to obtain an ideal scheduling solution in an acceptable time. For the large-scale flexible job shop scheduling problem (LSFJSP), a multi-guided population co-evolutionary algorithm based on multiple similarity decomposition (MPCSD) is designed. Faced with the problem of high dimensionality and complex solution space, a multiple similarity decomposition strategy is proposed. It proceeds to group based on similarity information at the dimension and population level. To obtain convergence-preferred and diversity-preferred dimension groupings, a training-set solution selection method is proposed. Inspired by the idea of divide-and-conquer, a multi-guided co-evolutionary strategy is proposed. It improves the exploration efficiency of the algorithm in the search space. To test effectiveness on more complex LSFJSP, a set of large-scale test problems including LS1-12 are designed. On LS1-12, MPCSD is compared with seven other algorithms to demonstrate its superiority. MPCSD performed best on 11, 7, and 10 of the 12 test problems on Inverted Generational Distance (IGD), Hypervolume (HV) and Schott’s Spacing Metric (SP), respectively. Meanwhile, the Relative Deviation (RD) results showed that MPCSD obtained the best fitness performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.