Abstract

Current video semantic segmentation tasks involve two main challenges: how to take full advantage of multi-frame context information, and how to improve computational efficiency. To tackle the two challenges simultaneously, we present a novel Multi-Granularity Context Network (MGCNet) by aggregating context information at multiple granularities in a more effective and efficient way. Our method first converts image features into semantic prototypes, and then conducts a non-local operation to aggregate the per-frame and short-term contexts jointly. An additional long-term context module is introduced to capture the video-level semantic information during training. By aggregating both local and global semantic information, a strong feature representation is obtained. The proposed pixel-to-prototype non-local operation requires less computational cost than traditional non-local ones, and is video-friendly since it reuses the semantic prototypes of previous frames. Moreover, we propose an uncertainty-aware and structural knowledge distillation strategy to boost the performance of our method. Experiments on Cityscapes and CamVid datasets with multiple backbones demonstrate that the proposed MGCNet outperforms other state-of-the-art methods with high speed and low latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.