Abstract

This paper proposes a multi-grained random fields (MGRFs) model for mitosis identification. To deal with the difficulty in hidden state discovery and sequential structure modeling in mitosis sequences only containing gradual visual pattern changes, we design the graphical structure to transform individual sequence into a set of coarse-to-fine grained sequencesconveying diverse temporal dynamics. Furthermore, we propose the corresponding probabilistic model for joint temporal learning and feature learning. To deal with the non-convex formulation of MGRF, we decomposemodel training into two sub-tasks, layer-wise sequential learning of both temporal dynamics and visual feature and new layer generation by graph-based sequential grouping, and optimize the model by alternating between them iteratively. The proposed method is validated on very challenging mitosis data set of C3H10T1/2 and C2C12 stem cells. Extensive comparison experiments demonstrate its superiority to the state of the arts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call