Abstract

Due to the limited number and uneven distribution globally of Beidou Satellite System (BDS) stations, the contributions of BDS to global ionosphere modeling is still not significant. In order to give a more realistic evaluation of the ability for BDS in ionosphere monitoring and multi-GNSS contributions to the performance of Differential Code Biases (DCBs) determination and ionosphere modeling, we select 22 stations from Crustal Movement Observation Network of China (CMONOC) to assess the result of regional ionospheric model and DCBs estimates over China where the visible satellites and monitoring stations for BDS are comparable to those of GPS/GLONASS. Note that all the 22 stations can track the dual- and triple-frequency GPS, GLONASS, and BDS observations. In this study, seven solutions, i.e., GPS-only (G), GLONASS-only (R), BDS-only (C), GPS + BDS (GC), GPS + GLONASS (GR), GLONASS + BDS (RC), GPS + GLONASS + BDS (GRC), are used to test the regional ionosphere modeling over the experimental area. Moreover, the performances of them using single-frequency precise point positioning (SF-PPP) method are presented. The experimental results indicate that BDS has the same ionospheric monitoring capability as GPS and GLONASS. Meanwhile, multi-GNSS observations can significantly improve the accuracy of the regional ionospheric models compared with that of GPS-only or GLONASS-only or BDS-only, especially over the edge of the tested region which the accuracy of the model is improved by reducing the RMS of the maximum differences from 5–15 to 2–3 TECu. For satellite DCBs estimates of different systems, the accuracy of them can be improved significantly after combining different system observations, which is improved by reducing the STD of GPS satellite DCB from 0.243 to 0.213, 0.172, and 0.165 ns after adding R, C, and RC observations respectively, with an increment of about 12.3%, 29.4%, and 32.2%. The STD of GLONASS satellite DCB improved from 0.353 to 0.304, 0.271, and 0.243 ns after adding G, C, and GC observations, respectively. The STD of BDS satellite DCB reduced from 0.265 to 0.237, 0.237 and 0.229 ns with the addition of G, R and GR systems respectively, and increased by 10.6%, 10.4%, and 13.6%. From the experimental positioning result, it can be seen that the regional ionospheric models with multi-GNSS observations are better than that with a single satellite system model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.