Abstract

Functional redundancy often hampers the analysis of gene families. To overcome this difficulty, we constructed Arabidopsis thaliana lines that expressed artificial microRNAs designed to simultaneously target two to six paralogous genes encoding members of transcription factor families. Of the 576 genes that we chose as targets, only 122 had already been functionally studied at some level. As a simple indicator of the inhibitory effects of our amiRNAs on their targets, we examined the amiRNA-expressing transgenic lines for morphological phenotypes at the rosette stage. Of 338 transgenes tested, 21 caused a visible morphological phenotype in leaves, a proportion that is much higher than that expected as a result of insertional mutagenesis. Also, our collection probably represents many other mutant phenotypes, not just those in leaves. This robust, versatile method enables functional examination of redundant transcription factor paralogs, and is particularly useful for genes that occur in tandem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.