Abstract
Biominerals are inherently organic-inorganic crystal composites. Drawing inspiration from this biomineral structure, functionalized single crystals can be synthesized using the gel-grown method, resulting in the incorporation of gel-networks into the host crystals. By incorporating gel-networks, diverse guest materials, such as nanoparticles and dye molecules, can be uniformly and isotropically distributed within the crystals, thereby imparting non-intrinsic optical or magnetic properties to the host crystals. Additionally, gel-incorporation enhances the toughness and stability of the crystals as the incorporated gel-fibers and accompanying guest materials act as bridges to prevent crack propagation. Furthermore, gel-incorporation enables protein crystals to exhibit self-healing properties, which can be attributed to the dynamic bonding interaction between gel-networks and crystals. Notably, recent research has demonstrated that the incorporation of zwitterionic gel-networks enhances the charge effects on crystal morphology evolution as the charged groups become bound to the developing crystal surfaces, and their detachment is impeded by the interconnected gel-networks. Therefore, preparing single crystals with gel-incorporation is a remarkable strategy for synthesizing functionalized crystal materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.