Abstract

Purpose The purpose of this paper is to evaluate the applicative potentiality of functional/self-responsive materials in aeronautics. In particular, the study aims to experimentally validate the enhancement of structural performances of carbon fibers samples in the presence of nanofillers, as multi-walled carbon nanontubes or microcapsules for the self-healing functionality. Design/methodology/approach The paper opted for a mechanical study. Experimental static and dynamic tests on “blank” and modified formulations were performed in order to estimate both strength and damping parameters. A cantilever beam test set-up has been proposed. As a parallel activity, a numerical FE approach has been introduced to assess the correct modeling of the system. Findings The paper provides practical and empirical insights about how self-responsive materials react to mechanical solicitations. It suggests that reinforcing a sample positively affects the samples properties since they, de facto, improve the global structural performance. This work highlights that the addition of carbon nanotubes strongly improves the mechanical properties with a simultaneous slight enhancement in the damping performance. Damping properties are, instead, strongly enhanced by the addition of self-healing components. A balanced combination of both fillers could be adopted to increase electrical conductivity and to improve global performance in damping and auto-repairing properties. Practical implications The paper includes implications for the use of lightweight composite materials in aeronautics. Originality/value This paper fulfills an identified need to study new lightweight self-responsive smart materials for aeronautical structural application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.