Abstract
Exudate management is of significant clinical value for the treatment of acute wound. Various wound dressings have been developed to restore the function of injured tissues and promote wound healing, but proper exploiting the healing factors inside exudate and achieving anti-adhesion wound care remains a challenge. Herein, we present a novel multi-functional composite dressing (MCD) by coupling supernatant lyophilized powder of mesenchymal stem cells (MSC-SLP) with a sandwich-structured wound dressing (SWD). The developed MCDs demonstrated unique unidirectional drainage capability, stable anti-adhesion characteristics, and improved wound healing performance. The designed SWD with both superhydrophobic inner surface and liquid-absorption ability of mid layer enables the dressings exhibit desired anti-adhesion property to neoformative granulation tissues, favorable shielding effect to exogenous bacteria, as well as appropriate exudate-retaining capability and unidirectional exudate-absorption property. The introduction of MSC-SLP in SWD was demonstrated to further improve wound healing quality. Compared to medical gauze, the synergic effect of SWD and MSC-SLP significantly accelerates wound healing rate by over 30%, avoids tissue avulsion when changing dressings, and produces a flat-smooth closure surface. More importantly, the wound treated with MCDs presents more skin accessory organs and blood vessels in regenerated tissues than other groups. In vivo/vitro biocompatibility evaluations indicated little toxicity, demonstrating the biosecurity of the developed dressings. The proposed method offers great potential in clinical applications particularly for chronic wound treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.