Abstract
The present paper describes a novel multi-functional Calotropis gigantea (CG) fabric with durable antibacterial property and comfortable wearability for various applications. First, antibacterial microspheres (AMs) were prepared by self-assembly of silk fibroin (SF), chitosan (CS) and nano-silver microspheres (NSMs). Oxygen low-temperature plasma (OLTP) treatment was used to improve the adhesion between AMs and CG yarn. The AMs modified CG fabric has soft hand feeling, high moisture regain (10.37 ± 1.87%), good breathability, strong wrinkle resistance, and durable antibacterial properties. The antibacterial rate of the modified CG fabric against Escherichia coli (E. Coil) and Staphylococcus aureus (S. Aureus) is as high as 99.9 ± 0.1%, and it still has an antibacterial activity after washing 20 times (90.24 ± 0.65% and 80.25 ± 1.14%, respectively). The in vivo biocompatibility test showed clear signs of angiogenesis at the implantation site in the rats. Thus, this study offers the foundation for the development of functional CG fiber-based biomedical textiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.