Abstract

Extraction of coconut paring oil (CPO) from processing by-products adds value to the product and reduces resource wastage. This study aims to assess the impact of 20 kHz, 20/80 kHz and 20/40/80 kHz of multi-frequency ultrasonic-assisted enzymatic extraction (MFUAEE) on the yield, physicochemical properties, fatty acid composition, total phenolic content, antioxidant activity, and emulsion stability of CPO derived from wet coconut parings (WCP). Results revealed that the CPO extraction yield with MFUAEE was 32.58 % − 43.31 % higher compared to AEE. The tri-frequency 20/40/80 kHz mode of multi-frequency ultrasound pretreatment exhibited the highest CPO extraction yield (70.08 %). The oil extracted through MFUAEE displayed similar fatty acid profiles to AEE, but had lower peroxide value, K232 and K270 values. Particularly, MFUAEE oil contained higher total phenolic content and exhibited potent DPPH free radical scavenging capacity. Results observed by SEM indicated that the pretreatment with multi-frequency ultrasound more efficiently disrupts the cellular structure of the WCP. Additionally, MFUAEE enhanced emulsion stability through the cavitation effect of ultrasound. These findings suggest that MFUAEE is a valuable approach for method for obtaining CPO with elevated extraction yield and superior quality, thereby enhancing the utilization of coconut by-products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call