Abstract

We present a detailed study of new Australia Telescope Compact Array and XMM-Newton observations of LHA 120–N 70 (hereafter N 70), a spherically shaped object in the Large Magellanic Cloud, classified as a superbubble. Both archival and new observations were used to produce high quality radio continuum, X-ray, and optical images. The radio spectral index of N 70 is estimated to be α = −0.12 ± 0.06, indicating that while a supernova (SN) or supernovae have occurred in the region at some time in the distant past, N 70 is not the remnant of a single specific SN. N 70 exhibits limited polarization with a maximum fractional polarization of 9% in a small area of the northwest limb. We estimate the size of N 70 to have a diameter of 104 pc (±1 pc). The morphology of N 70 in X-rays closely follows that in radio and optical, with most X-ray emission confined within the bright shell seen at longer wavelengths. Purely thermal models adequately fit the soft X-ray spectrum which lacks harder emission (above 1 keV). We also examine the pressure output of N 70 where the values for the hot (PX) and warm () phases are consistent with other studied H ii regions. However, the dust-processed radiation pressure (PIR) is significantly smaller than in any other object studied in Lopez et al. N 70 is a very complex region that is likely to have had multiple factors contributing to both the origin and evolution of the entire region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.