Abstract

A new instrument for high resolution imaging of fast-neutrons is presented here. It is designed for energy selective radiography in nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. The device presented here is based on hydrogenous scintillator screens and single- or multiple-gated intensified camera systems (ICCD). A key element is a newly developed optical amplifier which generates sufficient light for the high-speed intensified camera system, even from such faint light sources as fast plastic and liquid scintillators. Utilizing the Time-of-Flight (TOF) method, the detector incorporating the above components is capable of simultaneously taking up to 8 images, each at a different neutron energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call