Abstract

The Bose-Einstein-condensation applications give rise to the superfluidity in the liquid helium and superconductivity in the metals. In this paper, we work on a three-component Gross-Pitaevskii system, which describes the matter waves in an spin-1 spinor Bose-Einstein condensate. We construct a multi-fold binary Darboux transformation with the zero seed solutions to describe the three vertical spin projection of the spin-1 spinor BEC, which is different from all the existing Darboux-type ones for the same system, and derive three types of the exponential-and-rational mixed soliton solutions associated with two conjugate complex eigenvalues. For such mixed solitons, we give their asymptotic expressions, indicating that they consist of the Ieda-Miyakawa-Wadati (IMW)-polar-state or IMW-ferromagnetic solitons but possess the time-dependent velocities. Asymptotically and graphically, interaction mechanisms between the mixed and exponential solitons are classified in six cases, and we exhibit the inelastic and elastic interactions through calculating the modifications of the polarization matrices and phase shifts for the two interacting solitons. We find that both the IMW-polar-state solitons, including the mixed and exponential solitons, can not alter the other soliton’s intensity distribution during the interaction, while the mixed or exponential soliton in the IMW-ferromagnetic state does.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call