Abstract

Gastric cancer (GC) is the third leading cause of cancer-associated deaths globally. Accurate risk prediction of the overall survival (OS) for GC patients shows significant prognostic value, which helps identify and classify patients into different risk groups to benefit from personalized treatment. Many methods based on machine learning algorithms have been widely explored to predict the risk of OS. However, the accuracy of risk prediction has been limited and remains a challenge with existing methods. Few studies have proposed a framework and pay attention to the low-level and high-level features separately for the risk prediction of OS based on computed tomography images of GC patients. To achieve high accuracy, we propose a multi-focus fusion convolutional neural network. The network focuses on low-level and high-level features, where a subnet to focus on lower-level features and the other enhanced subnet with lateral connection to focus on higher-level semantic features. Three independent datasets of 640 GC patients are used to assess our method. Our proposed network is evaluated by metrics of the concordance index and hazard ratio. Our network outperforms state-of-the-art methods with the highest concordance index and hazard ratio in independent validation and test sets. Our results prove that our architecture can unify the separate low-level and high-level features into a single framework, and can be a powerful method for accurate risk prediction of OS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.