Abstract

It is now widely acknowledged that traditional wavelets are not very effective in dealing with multidimensional signals containing distributed discontinuities. Shearlet Transform is a new discrete multiscale directional representation, which combines the power of multiscale methods with a unique ability to capture the geometry of multidimensional data and is optimally efficient in representing images containing edges. In this work, coefficients with greater Sum-Modified-Laplacian are selected to combine images when high-frequency and low-frequency Shearlet subbands of source images are compared. Numerical experiments demonstrate that the method base on Shearlet Transform and Sum-Modified-Laplacian is very competitive and better than other multi-scale geometric analysis tools in multifocus image fusion both in terms of objectives performance and objective criteria. DOI : http://dx.doi.org/10.11591/telkomnika.v12i1.3365

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.