Abstract

Optimum laminate configuration for minimum weight of filament-wound laminated conical shells is investigated subject to a buckling load constraint. In the case of a composite laminated conical shell, due to the manufacturing process, the thickness and the ply orientation are functions of the shell coordinates, which ultimately results in coordinate dependence of the stiffness matrices (A,B,D). These effects influence both the buckling load and the weight of the structure and complicate the optimization problem considerably. High computational cost is involved in calculating the buckling load by means of a high-fidelity analysis, e.g. using the computer code STAGS-A. In order to simplify the optimization procedure, a low-fidelity model based on the assumption of constant material properties throughout the shell is adopted, and buckling loads are calculated by means of a low-fidelity analysis, e.g. using the computer code BOCS. This work proposes combining the high-fidelity analysis model (based on exact material properties) with the low-fidelity model (based on nominal material properties) by using correction response surfaces, which approximate the discrepancy between buckling loads determined from different fidelity analyses. The results indicate that the proposed multi-fidelity approaches using correction response surfaces can be used to improve the computational efficiency of structural optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.