Abstract
In this study, a technique for low-cost multi-objective design optimisation of antenna structures has been proposed. The proposed approach is an enhancement of a recently reported surrogate-assisted technique exploiting variable-fidelity electromagnetic (EM) simulations and auxiliary kriging interpolation surrogate, the latter utilised to produce the initial approximation of the Pareto set. A bottleneck of the procedure for higher-dimensional design spaces is a large number of training data samples necessary to construct the surrogate. Here, the authors propose a procedure that allows us to confine the model domain to the subset spanned by the reference points, including the extreme Pareto-optimal designs obtained by optimising the individual objectives as well as an additional design that determines the Pareto front curvature. Setting up the surrogate in the constrained domain leads to a dramatic reduction of the required number of data samples, which results in lowering the overall cost of the optimisation process. Furthermore, the model domain confinement is generic, i.e. applicable for any number of design goals considered. The proposed technique is demonstrated using an ultra-wideband monopole antenna optimised with respect to three objectives. Significant reduction of the design cost is obtained as compared to the reference surrogate-assisted algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.