Abstract

This study presents a multi-fidelity framework that enables the construction of surrogate models capable of capturing complex correlations between design variables and quantities of interest. Resistance in calm water is investigated for a SWATH hull in a multidimensional design space using a new method to derive high-quality response surfaces through machine learning techniques based on a low number of high-fidelity computations and a larger number of less-expensive low-fidelity computations. First, a verification and validation study is presented with the goal of comparing and ranking numerical methods against experiments performed on a conventional SWATH geometry. Then, the hull geometry of a new family of unconventional SWATH hull forms with twin counter-canted struts is parametrically defined and sequentially refined using multi-fidelity Bayesian optimization. Ship resistance in calm water is finally predicted using observations from two different fidelity levels. We demonstrate that the multi-fidelity optimization framework is successful in obtaining an optimized design using a small number of high-fidelity computations and a larger number of low-fidelity computations. Simulation and optimization costs are reduced by orders of magnitude, providing accurate certificates of fidelity for the performance of the proposed design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call