Abstract

A multi-fidelity model for beam vibration is developed by coupling a low-fidelity Euler-Bernoulli beam finite element model with a high-fidelity Timoshenko beam finite element model. Natural frequencies are used as the response measure of the physical system. A second order response surface is created for the low-fidelity Euler-Bernoulli model using the face centered design. Correction response surfaces for multi-fidelity analysis are created by utilizing the high-fidelity finite element predictions and the low-fidelity finite element predictions. It is shown that the multi-fidelity model gives accurate results with high computational efficiency when compared to the high-fidelity finite element model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call