Abstract

The heart sound reflects the movement status of the cardiovascular system and contains the early pathological information of cardiovascular diseases. Automatic heart sound diagnosis plays an essential role in the early detection of cardiovascular diseases. In this study, we aim to develop a novel end-to-end heart sound abnormality detection and classification method, which can be adapted to different heart sound diagnosis tasks. Specifically, we developed a Multi-feature Decision Fusion Network (MDFNet) composed of a Multi-dimensional Feature Extraction (MFE) module and a Multi-dimensional Decision Fusion (MDF) module. The MFE module extracted spatial features, multi-level temporal features and spatial-temporal fusion features to learn heart sound characteristics from multiple perspectives. Through deep supervision and decision fusion, the MDF module made the multi-dimensional features extracted by the MFE module more discriminative, and fused the decision results of multi-dimensional features to integrate complementary information. Furthermore, attention modules were embedded in the MDFNet to emphasize the fundamental heart sounds containing effective feature information. Finally, we proposed an efficient data augmentation method to circumvent the diagnosis performance degradation caused by the lack of cardiac cycle segmentation in other end-to-end methods. The developed method achieved an overall accuracy of 94.44% and a F1-score of 86.90% on the binary classification task and a F1-score of 99.30% on the five-classification task. Our method outperformed other state-of-the-art methods and had good clinical application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.