Abstract

This paper addresses the multi-fault diagnosis problem of thrusters and sensors for autonomous underwater vehicles (AUVs). Traditional support vector domain description (SVDD) has low classification accuracy in the process of AUV multi-fault pattern classification because of the effect of sample sparse density and the uneven distribution of samples, and so on. Thus, a fuzzy weighted support vector domain description (FWSVDD) method based on positive and negative class samples is proposed. In this method, the negative class sample is introduced during classifier training, and the local density and the class weight are introduced for each sample. To improve the multi-fault pattern classifier training speed and fault diagnosis accuracy of FWSVDD, a multi-fault mode classification method based on a hierarchical strategy is proposed. This method adds fault contain detection surface for each thruster and sensor to isolate fault components during fault diagnosis. By considering the problem of pattern classification for a fuzzy sample, which may be located in the overlapping area of hyper-spheres or may not belong to any hyper-sphere in the process of multi-fault classification based on FWSVDD, a relative distance judgment method is given. The effectiveness of the proposed multi-fault diagnosis approach is demonstrated through water tank experiments with an experimental AUV prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.