Abstract

Technological developments in the area of functionally graded multi-material manufacture are poised to disrupt the aerospace industry, providing the means for step-change improvements in performance through tailored component design. However, the challenges faced during the downstream processing, i.e., machining of such functionally graded multi-materials are unclear. In this study, the challenges involved when face-turning billets consisting of multiple alloys are assessed. To achieve this, a cylindrical billet consisting of Ti-64, Ti-6242, Ti-5553 and Beta C alloys was manufactured from powder feedstock using field-assisted sintering technique (FAST) and termed MulTi-FAST billets. A detailed study of the structural integrity during machining at the diffusion bond interfaces of multiple titanium alloy bond pairings in the MulTi-FAST billet was conducted. The machining forces were measured during face-turning to investigate the impact and behaviour of different alloy pairings during a continuous machining operation. The results showed the significant differences in force machining response, surface topography and the type of surface damage was dependent on the direction the titanium alloy graded pairings were machined in. In terms of subsurface microstructural damage, regardless of the machining direction, no critical damage was found in the vicinity of the bonded alloys. The findings provide an insight into the deformation characteristics and challenges faced in the machining of functionally graded components with multiple titanium alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.