Abstract
In this paper, we established multi-factor stock selection model based on Adaboost by using Adaboost to integrate the custom week classifier model, and Shanghai and Shenzhen 300 stocks are taken as the research object. During the stock retest, the first is make a comparative test between Adaboost multi-factor stock selection model and the traditional multi-factor model, among them, the factor large class isn’t considered in the multi-factor stock selection model. And the results of two contrast experiment showed that the multi-factor stock selection model based on Adaboost has stronger profitability and less risk than the traditional multi-factor model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.